ЗАДАЧА 4137 Установите соответствие между названием

УСЛОВИЕ:

Установите соответствие между названием неорганического соединения и классом, к которому оно принадлежит.

НАЗВАНИЕ СОЕДИНЕНИЯ

A) угарный газ
Б) мрамор
B) пищевая сода
Г) гашеная известь

КЛАСС СОЕДИНЕНИЙ

1) средние соли
2) кислые соли
3) основные соли
4) кислоты
5) основания
6) оксиды

Показать решение

РЕШЕНИЕ:

угарный газ является оксидом, марамор-карбонат кальция, является солью, пищевая сода-соль, гащёная известь-гидроксид кальция является основанием
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

ОТВЕТ:

6125

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Химии? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 1757 ⌚ 16.10.2015. химия 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация
Увы, но решение никто не написал...

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ 1. Пусть один катет а=5 , второй катет b=12, тогда по теореме Пифагора с=sqrt(a^2+b^2)=sqrt(5^2+12^2)=sqrt(25=144)=sqrt(169)= =13. S(полн.)=2S(осн.)+S(бок.)=2*(1/2)a*b+P(осн.)*H= =2*(1/2)*5*12+(5+12+13)*8=60+240=300 2.Пусть сторона верхнего основания равна а, нижнего b. Тогда S(полн.)=S1(осн.)+S2(осн.)+S(бок.)= =a^2+b^2+4S(трапеции)= =a^2+b^2+4*(a+b)*h/2 h-апофема боковой грани. По теореме Пифагора h^2=H^2+((b-a)/2))^2=4^2+(4-1)^2=16+9=25 h=5 (см. рис.) S(полн.)=2^2+8^2+4*(2+8)*5/2=4+64+100=168 к задаче 15378

MEOW_LIN ✎ cos(pi/3)+sqrt(2)*sin(pi/4)=1/2+sqrt(2)*sqrt(2)/2=1/2+1=1,5 к задаче 15377

SOVA ✎ 1 cпособ. Применяем формулу Тейлора. см. приложение. f(x)=1/(x^2+3x+2) a=-4 f(-4)=1/6 f`(x)=-(2x+3)/(x^2+3x+2)^2; f`(-4)=-(-8+3)/6^2=5/36 f``(x)=-(2*(x^2+3x+2)^2-2(x^2+3x+2)*(2x+3)*(2x+3))/(x^2+3x+2)^4= =(6x^2+18x+14)/(x^2+3x+2)^3 f``(-4)=38/216 ... Подставляем найденные значения коэффициентов Тейлора в формулу. Получим ответ ( см. приложение) 2 способ. Известно разложение функции f(x)=1/(1-x) в ряд: 1/(1-x)=1+x+x^2+...+x^(n)+..., которое при |x| < 1 представляет сумму бесконечно убывающей геометрической прогрессии. Ряд сходится для всех х, |x| < 1 Данная функция представима в виде разности двух дробей: 1/(x^2+3x+2)=(1/(1+x)) -(1/(2+x)) Разложим 1/(1+х)=1-х+x^2-x^3+...+(-1)^n*x^n+... Ряд сходится при |x| < 1 1/(2+x)=(1/2)*(1/(1+(x/2)))= =(1/2)*(1-(х/2)+(x/2)^2-(x/2)^3+...+(-1)^n*(x/2)^n+...) Ряд сходится при всех |x/2| < 1 или |x| < 2 Тогда 1/(x^2+3x+2)=(1/(1+x)) -(1/(2+x))= =(1-х+x^2-x^3+...+(-1)^n*x^n+...)+ +(1/2)*(1-(х/2)+(x/2)^2-(x/2)^3+...+(-1)^n*(x/2)^n+...)= (1+(1/2))-(1+(1/4))x+(1+(1/8))x^3+... ...+ (-1)^n(1+(1/2^(n+1))x^n+... Ряд сходится как разность двух сходящихся рядов на пересечении областей сходимсти двух рядов, а это значит на множестве (-1;1) к задаче 15369

MEOW_LIN ✎ 1) 0,86/2,15=0,4 2) 6+3/100+6/1000=6+0,03+0,006=6,036 к задаче 15375

SOVA ✎ Применяем формулу: sin^3x=(1/4)*(3sinx-sin3x)=(3/4)sinx-(1/4)sin3x Так как sinx=x-(x^3/3!)+(x^5/5!)-(x^7/7!)+... ...+ (-1)^(n-1)*x^(2n-1)/(2n-1)! + ... Ряд сходится на (-бесконечность; + бесконечность) Тогда sin3x=(3x)-((3x)^3/3!)+((3x)^5/5!)-((3x)^7/7!)+... ... + (-1)^(n-1)*(3x)^(2n-1)/(2n-1)! + ... Ряд сходится на (-бесконечность; + бесконечность) sin^3x=(3/4)*(x-(x^3/3!)+(x^5/5!)-(x^7/7!)+... ... + (-1)^(n-1)*x^(2n-1)/(2n-1)! + ...)- -(1/4)*((3x)-((3x)^3/3!)+((3x)^5/5!)-((3x)^7/7!)+... ...+ (-1)^(n-1)*(3x)^(2n-1)/(2n-1)! + ...)= =(3/4)x-(3/4)x +((-3x^3)/(4*3!)+(3^3x^3)/(4*3!))+ +((3x^5)/(4*5!)-(3^5x^5)/(4*5!))+... ...+(-1)^(2n-1)(3-3^(2n-1))x^(2n-1)/4*(2n-1)!+ ... = cм. приложение. Ряд сходится на ( - бесконечность; + бесконечность) как разность двух сходящихся рядов. к задаче 15371