ЗАДАЧА 4137 Установите соответствие между названием

УСЛОВИЕ:

Установите соответствие между названием неорганического соединения и классом, к которому оно принадлежит.

НАЗВАНИЕ СОЕДИНЕНИЯ

A) угарный газ
Б) мрамор
B) пищевая сода
Г) гашеная известь

КЛАСС СОЕДИНЕНИЙ

1) средние соли
2) кислые соли
3) основные соли
4) кислоты
5) основания
6) оксиды

Показать решение

РЕШЕНИЕ:

угарный газ является оксидом, марамор-карбонат кальция, является солью, пищевая сода-соль, гащёная известь-гидроксид кальция является основанием
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

ОТВЕТ:

6125

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Химии? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 1515 ⌚ 16.10.2015. химия 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация
Увы, но решение никто не написал...

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ к задаче 13099

SOVA ✎ х руб стоит пробка, (х+10)руб. стоит бутылка х+(х+10)=11 2х=1 х=0,5 0,5 руб стоит пробка. 10,5 руб стоит бутылка 10,5+0,5=11 руб стоит бутылка с пробкой. к задаче 13101

SOVA ✎ Cм. рисунок. Пусть точки А(х_(А);у_(А)) и В(х_(В);у_(В)) лежат на параболе, а точки С и D на прямой у=х–0,5. Противоположные стороны квадрата параллельны.Значит, точки А и В лежат на прямой АВ, параллельной прямой у=х–0,5. Пусть это прямая у=х+m. Значит, у_(А)=х_(А)+m; y_(B)=x_(B)+m Расстояние между точками А и В d^2=(x_(B)–x_(A))^2+(y_(B)–y_(A))^2= = (x_(B)–x_(A))^2+(x_(B)–m–y_(A)+m)^2= =2• (x_(B)–x_(A))^2. Рассмотрим прямоугольный треугольник РКЕ, PK⊥CD. Р–точка пересечения прямой у=х+m c осью ОУ. Р(0;m) Е– точка пересечения прямой у=х–0,5 с осью ОУ. Е(0;–0,5) РЕ=m+0,5 Прямые у=х+m и у=х–0,5 образуют с осью Ох угол 45°, а значит и с осью Оу угол 45°. РК=ВС=d=(m+0,5)•sin45°=(m+0,5)/√2. d^2=(m+0,5)^2/2. Все стороны квадрата равны. АВ=ВС, но ВС=РК, значит AB=PK. Получаем уравнение (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Так как точки А и В лежат на параболе, то у_(А)=4х^2_(А); у_(В)=4х^2_(В) и на прямой, то m=4х^2_(B)–x_(B)=4х^2_(А)–х_(А) или 4х^2_(B)–x_(B)=4х^2_(А)–х_(А) 4х^2_(B)-4х^2_(А)=x_(B)–х_(А) (x_(B)–х_(А))*(4x_(B)+4x_(A)-1)=0 Откуда х_(А)+х_(В)=0,25 ––––––––––––– Подставим х_(В)=0,25-х_(А) в уравнение: (m+0,5)^2/2=2•(x_(B)–x_(A))^2. Получаем 4•(2х_(В)–0,25)^2=(4x^2_(B)–x_(B)+0,5)^2 Упрощаем 16x^4_(B)-8x^3_(B)-11x^2_(B)+3x_(B)=0; x_(B)*(x_(B)+1)*(4x_(B)-1)^2=0; Наибольшее значение d при х_(В)=-1 х_(А)=1,25 d^2=2*(x_(B)-x_(A))^2=2*(-2,25)^2=10,125 S=d^2=10,125=81/8 к задаче 13100

SOVA ✎ Раскрываем модули: 1) x больше или равно 0 |2x-4|=|x^2-a| ⇒ 2x-4=x^2-a или 2х-4=-x^2+a a=x^2-2x+4 или а=x^2+2x-4 1а) {x больше или равно 0 {a=x^2-2x+4 или {x больше или равно 0 {a=x^2+2x-4 2) x < 0 |-2x-4|=|x^2-a| -2x-4=x^2-a или -2х-4=-x^2+a 2a) {x < 0 {a=x^2+2x+4 или 2б) {x < 0 {a=x^2-2x-4 Применяем координатно параметрический метод. Строим графики в системе координат хОа. рис. 1 при a∈(3;4) рис.2 нет таких а > 0 к задаче 13093

SOVA ✎ Самая низшая оценка 6,5 Самая высшая 9,0 Они не учитываются. Остальные: 7,5+8,0+7,5+8,5=31,5 31,5*2,4=75,6 О т в е т. 75,6 к задаче 13078