ЗАДАЧА 12763 12) 1+log3(9x^2+1) =

УСЛОВИЕ:

12) 1+log3(9x^2+1) = log(sqrt(3))sqrt(3x^4+63)

[-3/2; 5/3]

Добавил Karisaidova , просмотры: ☺ 34 ⌚ 09.01.2017. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Сначала регистрация

РЕШЕНИЕ ОТ SOVA ПОКАЗАТЬ РЕШЕНИЕ ЛУЧШЕЕ РЕШЕНИЕ!

По формуле перехода к другому основанию и по формуле логарифма степени
log_(sqrt(3)sqrt(3x^4+63)=
=log_(3)sqrt(3x^4+63)/log_(3)sqrt(3)=
=log_(3)sqrt(3x^4+63)/(1/2)=2 log_(3)sqrt(3x^4+63)=
=log_(3)(sqrt(3x^4+63))^2=log_(3)(3x^4+63)

1=log_(3)3
log_(3)3+log_(3)(9x^2+1)=log_(3)(3x^4+63);
Cумму логарифмов заменим логарифмом произведения
log_(3)3*(9x^2+1)=log_(3)(3x^4+63);
3*(9x^2+1)=3x^4+63;
3x^4-27x^2+60=0
x^4-9x^2+20=0
D=81-80=1
x^2=5 или х^2=4
x_(1)=-sqrt(5) < -3/2; x_(2)=sqrt(5) > 5/3;x_(3)=-2 < -3/2; x_(4)=2 > 5/3
ни один из найденных корней не принадлежит указанному промежутку
ЕСТЬ ВОПРОСЫ?
НАШЛИ ОШИБКУ?
Сначала регистрация
Сначала регистрация

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

MargaritaPyrkina ✎ к задаче 12958

MargaritaPyrkina ✎ к задаче 12959

MargaritaPyrkina ✎ к задаче 12968

SOVA ✎ 1) S=∫^1_(-1)(0-(x^2-1))dx=(x-(x^3/3))^1_(-1)=4/3; 2)S=∫^0_(-1)(-x-(x^3))dx=((x^4/4)-(x^2/2))^0_(-1)=1/4; 3)S=∫^1_0(5x-2x)dx=(3^2/2))^1_0=3/2. к задаче 12963

SOVA ✎ Замена переменной 7^x=t; t > 0 (t-1)/3=(7t+49)/7t Применяем основное свойство пропорции 7t*(t-1)=3*(7t+49) 7t^2-28t-147=0 t^2-4t-21=0 D=16+4*21=100 t=7 или t=-3 - не удовл. условию t > 0 7^x=7 x=1 О т в е т. х=1 к задаче 12965