Теория к заданию 12 ЕГЭ по Математике "Наибольшее и наименьшее значение функций"

В этой статье я расскажу про алгоритм поиска наибольшего и наименьшего значения функции, точек минимума и максимума.

Из теории нам точно пригодится таблица производных и правила дифференцирования. Все это есть в этой табличке:



Алгоритм поиска наибольшего и наименьшего значения.

Мне удобнее объяснять на конкретном примере. Рассмотрим:

Пример: Найдите наибольшее значение функции y=x^5+20x^3–65x на отрезке [–4;0].


Шаг 1. Берем производную.

y' = (x^5+20x^3–65x)' = 5x^4 + 20*3x^2 - 65 = 5x^4 + 60x^2 - 65

Шаг 2. Находим точки экстремума.

Точкой экстремума мы называем такие точки, в которых функция достигает своего наибольшего или наименьшего значения.

Чтобы найти точки экстремума, надо приравнять производную функции к нулю (y' = 0)

5x^4 + 60x^2 - 65 = 0

Теперь решаем это биквадратное уравнение и найденные корни есть наши точки экстремума.

Я решаю такие уравнения заменой t = x^2, тогда 5t^2 + 60t - 65 = 0.

Сократим уравнение на 5, получим: t^2 + 12t - 13 = 0

D = 12^2 - 4*1*(-13) = 196

t_(1) = (-12 + sqrt(196))/2 = (-12 + 14)/2 = 1

t_(2) = (-12 - sqrt(196))/2 = (-12 - 14)/2 = -13

Делаем обратную замену x^2 = t:

x_(1 и 2) = ±sqrt(1) = ±1
x_(3 и 4) = ±sqrt(-13) (исключаем, под корнем не может быть отрицательных чисел, если конечно речь не идет о комплексных числах)

Итого: x_(1) = 1 и x_(2) = -1 - это и есть наши точки экстремума.

Шаг 3. Определяем наибольшее и наименьшее значение.

Метод подстановки.

В условии нам был дан отрезок [b][–4;0][/b]. Точка x=1 в этот отрезок не входит. Значит ее мы не рассматриваем. Но помимо точки x=-1 нам также надо рассмотреть левую и правую границу нашего отрезка, то есть точки -4 и 0. Для этого подставляем все эти три точки в исходную функцию. Заметьте исходную - это ту, которая дана в условии (y=x^5+20x^3–65x), некоторые начинают подставлять в производную...

y(-1) = (-1)^5 + 20*(-1)^3 - 65*(-1) = -1 - 20 + 65 = [b]44[/b]
y(0) = (0)^5 + 20*(0)^3 - 65*(0) = 0
y(-4) = (-4)^5 + 20*(-4)^3 - 65*(-4) = -1024 - 1280 + 260 = -2044

Значит наибольшее значение функции это [b]44[/b] и достигается оно в точки [b]-1[/b], которая называется точкой максимума функции на отрезке [-4; 0].


Мы решили и получили ответ, мы молодцы, можно расслабиться. Но стоп! Вам не кажется, что считать y(-4) как-то слишком сложно? В условиях ограниченного времени лучше воспользоваться другим способом, я называю его так:

Через промежутки занкопостоянства.

Находятся эти промежутки для производной функции, то есть для нашего биквадратного уравнения.

Я делаю это следующим образом. Рисую направленный отрезок. Расставляю точки: -4, -1, 0, 1. Не смотря на то, что 1 не входит в заданный отрезок, ее все равно следует отметить для того, чтобы корректно определить промежутки знакопостоянства. Возьмем какое-нибудь число во много раз больше 1, допустим 100, мысленно подставим его в наше биквадратное уравнение 5(100)^4 + 60(100)^2 - 65. Даже ничего не считая становится очевидно, что в точке 100 функция имеет знак плюс. А значит и на промежутки от 1 до 100 она имеет знак плюс. При переходе через 1 (мы идем справа налево)функция сменит знак на минус. При переходе через точку 0 функция сохранит свой знак, так как это лишь граница отрезка, а не корень уравнения. При переходе через -1 функция опять сменит знак на плюс.



Из теории мы знаем, что там, где производная функции (а мы именно для нее это и чертили) меняет знак с плюса на минус (точка -1 в нашем случае) функция достигает своего локального максимума (y(-1)=44, как была посчитано ранее) на данном отрезке (это логически очень понятно, функция перестала возрастать, так как достигла своего максимума и начала убывать).

Соответственно, там где производная функции меняет знак с минуса на плюс, достигается локальный минимум функции. Да, да, мы также нашли точку локального минимума это 1, а y(1) - это минимальное значение функции на отрезке, допустим от -1 до +∞. Обратите огромное внимание, что это лишь ЛОКАЛЬНЫЙ МИНИМУМ, то есть минимум на определенном отрезке. Так как действительный (глобальный) минимум функция достигнет где-то там, в -∞.

На мой взгляд первый способ проще теоретически, а второй проще с точки зрения арифметических действий, но намного сложнее с точки зрения теории. Ведь иногда бывают случаи, когда функция не меняет знак при переходе через корень уравнения, да и вообще можно запутаться с этими локальными, глобальными максимумами и минимумами, хотя Вам так и так придется это хорошо освоить, если вы планируете поступать в технический ВУЗ (а для чего иначе сдавать профильное ЕГЭ и решать это задание). Но практика и только практика раз и навсегда научит Вас решать такие задачи. А тренироваться можете на нашем сайте. Вот здесь.

Если появились какие-то вопросы, или что-то непонятно - обязательно спросите. Я с радостью Вам отвечу, и внесу изменения, дополнения в статью. Помните мы делаем этот сайт вместе!

slava191
874

Написать комментарий

Читайте также:

Онлайн-этап олимпиады «Физтех» по Математике 2017 года 11 класс

Онлайн-этап олимпиады «Физтех» по Математике 2017 года 11 класс

Тригонометрия, или как решать задания 13 единого государственного экзамена по математике. Часть II.

Математика ЕГЭ задача 13.
Не можешь решить?
ПОМОГИТЕ РЕШИТЬ
Мы ВКонтакте